
NOTATION 

~, length of liquid column in capillary at time t; r, capillary radius; L, capillary 
length; n, liquid dynamic viscosity coefficient; o, liquid surface tension coefficient; p, 
liquid density; e, static wetting angle; g, acceleration of gravity; ~, angle of inclina- 
tion of the capillary to the horizontal; ~, empirical proportionality coefficient; z, v, 
t0, Tz, a , ~*, new variables; kz, k2, roots of characteristic quadratic equation. 
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INFLUENCE OF A POSITIVE PRESSURE GRADIENT ON THE CHARACTERISTICS 

OF A TURBULENT BOUNDARY LAYER 

V. V. Zyabrikov UDC 532.526 

Based on a systematic analysis of present day experimental data published in 
the literature, a modified Prandtl-Clauserturbulence model is presented 
which makes it possible to take into account the effect of a positive pres- 
sure gradient on the average characteristics of a turbulent boundary layer. 

Determination of the characteristics of a turbulent boundary layer subject to the ac- 
tion of a positive pressure gradient constitutes a difficult problem from the experimental 
point of view. Proceedings of the Stanford Conference of 1980/81 (see [i]) show that there 
is as yet no full set of published experimental data that exhausts this problem (especially as 
far as the region before separation is concerned). According to the valid opinion of the 
authors of [2, 3], the difficulty in making an experimental study of the region close to 
the point where the turbulent boundary layer separates is associated with the emergence of 
short-duration reverse flows at a significant distance from the "stationary" separation 
point and with the need for using measuring instruments sensitive to the direction of the 
rate of flow. Although the first paper on this theme appeared in 1968 (see [2]), it is only 
recently that sufficiently detailed results of systematic measurements have been published 
[4-6] that justify modification of the Prandtl-Clauser model of turbulence. The present re- 
search was conducted under the guidance of L. G. Loitsyanskii. 

Distribution of Longitudinal Velocity and Frictional Stress in the Interior Region of 
Turbulent Boundary Layer. By the interior region of a turbulent boundary layer we mean 

that portion of it in which the turbulent viscosity increases with increasing distance from 
the wall. In contrast to the exterior region the interior region depends weakly on the pre- 
history of the flow and possesses a relative autonomy: The characteristics of this region 
can be regarded as functions only of the parameters of pressure gradient p, = (~/p)(dp/dx)/ 
v, ~ and convective acceleration g, = v(dv,/dx)v, 2 [7]. The interior region of the turbulent 
boundary layer with a positive pressure gradient consists of a viscous sublayer, a transi- 
tional portion, a logarithmic region, and a half-power law subregion [8]. The problem of 
determining the damping factor in the transition section was examined in detail in [7-9]. 
For a positive pressure gradient of arbitrary magnitude the damping factor can be approxi- 
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Fig. i. Velocity profile in interior region of turbulent 
boundary layer in wall coordinates: Values of p* for curves 
1-6 are 0; 0.021; 0.028; 0.062; 0.105; 0.282. Points plot- 
ted are experimental data from [4, 5]; continuous curves 
represent calculations from relations (1)-(4), (6), (7). 

Fig. 2. Turbulent boundary layer velocity profile in strat- 
ford coordinates: Values of p, for curves 1 and 2 are 
0.021 and 0.105, respectively. Plotted points are for ex- 
perimental data from [4, 5]; continuous curves correspond to 
calculations from relations (1)-(4), (6), and (7); dashed 
curves correspond to the exterior half-power law. 

mated by the following formula, which takes into account the experimental data of [4, 5] 
and is somewhat different from that given in [7]: 

D, = 0,0008 exp (SOp,) (l + p,~l,)~12,, 01, ~< %o), 

D,  = 1, ( r l ,>~l ,o)  , (1)  

~1,o = (V'I --k 4p,/-I/0,000S.exp (50p,y--  1)/(2p,). 

Here q,  = yv,/v is the ordinate of the wall; q*0 is the value of this ordinate at which 
the damping factor D, becomes equal to one. The longitudinal velocity profile u, = u/v, 
at an arbitrary point of the interior region is given by the expression (see, for example, 
[ 7 ] ) :  

u, ~ 2 .f %&l,  
o 1 4- g-1 -4- 4%12,D, ' (2)  

where ~p, = ~pv,/v is the dimensionless Prandtl mixing path length; ~, = T/~ W is the dimen- 
sionless frictional stress. Over its whole extent, starting from the wall and up to the end 
of the logarithmic portion, the length of the mixing path is given by the Reeves formula 
[7]: 

1~, -- •  (3 )  

while the frictional stress distribution is given by Coles' formula [i0]: 

0, 

T, = 1 @-p,q, -I- g , I ,  0],), I ,  (q,) = f u~dN,. (4 )  
0 

With the function K,(p,) known, relations (2)-(4) constitute a closed system of equations 
for determination of the functions u,(q,) and T,(q,). This system can be solved iteratively. 
However, as numerical calculations have shown, if for the first approximation over the whole 
portion, starting from the wall and up to the end of the logarithmic portion, we take the 
logarithmic velocity profile 
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1 
u, = In% § B,,  (5)  

substituting it into formula (4) and calculating the integral I,(q,) 

7" 
I ,  (~,) = - - T -  [ln~l, @ x ,B ,  - -  1) 2 ~- 1], (6)  

we then immediately obtain a sufficiently exact distribution ~,(q,). If we then substitute 
the function ~,(N,) so defined into formula (2) and integrate numerically, we obtain the 
exact distribution of the longitudinal velocity u,(q,). In practically all the known exper- 
iments in the literature the order of magnitude of the convective acceleration parameter g, 
does not exceed i0 -s in absolute value, as a result of which continuation of the iterational 
process changes the resulting distributions at most 1%, and, consequently, the iterations 
can be discontinued. 

The manner in which the coefficients ~, and B, in the logarithmic velocity profile (5) 
depend empirically on the pressure gradient parameter p, is obtained from experimental data 
in [4-6], the result being 

f 0,4 (p, ~ 0,006), 
[ 0,36 ~- 7,2p, (p, > 0,006), 

B, = / 5,1 (p, < 0,006), (7) 
[ 0,118 (p.-I- 0,017)-* (p, > 0,006). 

The latter expressions combine the law of conservation of the logarithmic velocity profile 
[ii] for small pressure gradients and the law of conservation of the form of logarithmic 
dependence for large pressure gradients [4-6]. The function B,(p,) was used in the deriva- 
tion of the damping factor (i). The empirical formulas (7) reflect the fact, noted by many 
authors (see [6, 12, 13]), that there is a lowering of the logarithmic segment on the graph 
of the velocity profile in comparison with the gradientless boundary layer and a decrease 
in its angle of inclination to the axis of abscissas to zero at the separation point, where 
the logarithmic dependence becomes zero [4, 5]. These effects are illustrated in Fig. 1 
where we present experimental data from [4, 5] and the results of calculations made in ac- 
cordance with relations (1)-(4), (6), and (7). As is evident from the figure, starting 
roughly at p, = 0.05, at the joining point N*l a discontinuity occurs in the derivative 
8u/By due to the emergence of an intermediate zone between the logarithmic region and the 
half-power law region. 

Interior and Exterior Half-Power Laws. The half-power law was introduced by analogy 
with the logarithmic law on the basis of Prandtl's formula for the turbulent friction stress 
T t and the assumption of a linear variation of T t with respect to y, valid in the immediate 
vicinity of the wall. In stratford variables we have [7]: 

' ' -- ' ~ S  - - ' -  ' ~ ' ~ls = ,~ Vs Vs P / 

the half-power law has the form [8]: 

2 

MS 

where in a first approximation the coefficient <S can be considered to be independent of the 
stratford pressure gradient parameter ~S: 

• ~ 0,6. (i0) 

The portion on which the half-power law (9), (I0) is valid is situated in the interior re- 
gion above the logarithmic portion. We call this law the interior half-power law. To de- 
termine the distribution of friction in the zone where this law applies, we transform the 
velocity profile coordinates (9), (i0) into wall coordinates using the relationships [7]: 

_I/3~ --l'3t[ --0/3 ~ s = P *  q*, U s =  P* *, ~ s = P * -  " (11) 
After substituting the resulting profile into formula (4), we obtain 
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i ,  (~,) : z, (~, j  + s, ( ~ , ) -  s, (~,j, (12) 

2/3 I +  ~/3 8 Bs V p~/%,+B~); 
s , ( ~ , ) = ~ , . ,  ~* ~'~+ 3 xs 

n*l  i s  t h e  b o u n d a r y  c o o r d i n a t e  be t ween  t h e  l o g a r i t h m i c  p o r t i o n  and t h e  i n t e r i o r  h a l f - p o w e r  
law r e g i o n ,  b e i n g  d e f i n e d  by t h e  u n i o n  o f  t h e  p r o f i l e s  ( 5 ) ,  ( 7 )  and ( 9 ) ,  ( 1 0 ) .  Fo rmu la s  
(4)  and ( 1 2 ) ,  in  t o t a l i t y ,  c o n s t i t u t e  an a n a l y t i c a l  e x p r e s s i o n  f o r  t h e  d i s t r i b u t i o n  o f  f r i c -  
t i o n  in  t h e  r e g i o n  where  t h e  i n t e r i o r  h a l f - p o w e r  law i s  v a l i d .  

The a u t h o r s  o f  [14] gave  a d e r i v a t i o n  o f  t h e  h a l f - p o w e r  law b a s e d  on a t h e o r y  o f  d imen-  
s i o n a l i t y  and t h e y  c o n f i r m e d  t h e  v a l i d i t y  o f  t h i s  law u s i n g  e x p e r i m e n t a l  d a t a  r e l a t i n g  t o  
t h e  e x t e r i o r  r e g i o n .  In  [6] e x p e r i m e n t a l  c o n f i r m a t i o n  was g i v e n  o f  t h e  f a c t  t h a t  in  t h e  
e x t e r i o r  r e g i o n  o f  t h e  p r e - s e p a r a t e d  b o u n d a r y  l a y e r  f rom y /6  = 0 .25  t o  y /6  = 0 .7  t h e  l o n g i -  
t u d i n a l  v e l o c i t y  v a r i e s  a c c o r d i n g  t o  t h e  s q u a r e  r o o t  o f  t h e  t r a n s v e r s e  c o o r d i n a t e .  I n  t h e  
e x t e r i o r  r e g i o n  t h e  t u r b u l e n t  f r i c t i o n  s t r e s s  does  n o t  grow l inear ly .  Thus ,  ou r  c o n c e r n  i s  
w i t h  t h e  d e r i v a t i o n  o f  a new e x t e r i o r  h a l f - p o w e r  law f o r  t h e  v e l o c i t y  p r o f i l e .  I n  F i g .  2, 
w i t h  t h e  a i d  o f  e x p e r i m e n t a l  d a t a  f rom [4,  5 ] ,  p r e s e n t e d  in  s t r a t f o r d  c o o r d i n a t e s ,  one can 
o b s e r v e  s i m u l t a n e o u s l y  b o t h  i n t e r i o r  ( s l o p e  <S = 0 . 6 )  and e x t e r i o r  (<S = 0 . 2 )  h a l f - p o w e r  
l aws .  As shown by e x p e r i m e n t a l  d a t a  [15] and t h e  c a l c u l a t i o n s  in  [ 8 ] ,  t h e  e x t e r i o r  h a l f -  
power law a p p l i e s  in  a g r a d i e n t l e s s  t u r b u l e n t  b o u n d a r y  l a y e r ;  i t  a l s o  h o l d s  f o r  a l a m i n a r  
s e l f - s i m i l a r  F a l k n e r - S k a n  f a m i l y  o f  v e l o c i t y  d i s t r i b u t i o n s .  

Coefficients of the exterior half-power law, in contrast to the interior half-power 
law, are not subject to regularities of the type (i0) and depend strongly on specific fric- 
tional conditions; therefore they can be called laws only by convention. The simultaneous 
existence of two half-power laws can even be observed in the first experimental data obtained 
in this region by Stratford (see, for example, Fig. 2.7 on p. 31 of [16]). Until now, an 
existing incorporation of the two half-power laws into one is not justified and leads to a 
large scatter in the experimental values of the coefficients [14]. 

Modification of Clauser's Formula for Turbulent Viscosity in the Exterior Region of 
a Turbulent Boundary Layer. The formula most used for the exterior region is Clauser's 
formula 

vt KU6*, (Tt Pv~ 8-~g ) 
= = - (13)  

\ 

Clauser's empirical constant K represents a dimensionless turbulent viscosity in the exter- 
ior region [17] and in a gradientless turbulent boundary layer has the value K = 0.0168 
[18]. The widely held opinion that this constant value can also be used in the case of a 
positive pressure gradient proves to be not the case, as was shown in [17]. Theory of 
dimensionality considerations and the effect of a degeneration of the interior region with 
approach to the separation point, as described in [17], show that the Clauser constant must 
be a decreasing function of the pressure gradient parameter in the exterior region: $ = 
(dp/dx)6*/T W. Diminution of the constant K with an increase in B also follows from the 
treatment of the experimental data [2] and is in agreement with the empirical formula of 
Kuhn and Nielsen [19]. In spite of the fact that in [20], in connection with a disregard 
of short-duration reverse flows and, possibly, errors of numerical differentiation of the 
velocity profile, the opposite conclusion is made, we can consider the tendency of the con- 
stant K to decrease with an increase in the parameter B as established. 

The question as to the size of the Clauser constant at the separation point of a turbu- 
lent boundary layer is debatable. The authors of [17], relying on the vanishing of the zone 
adjacent to the wall for generation of turbulent frictional stress, together with degenera- 
tion of the interior region, suggest taking the constant K equal to zero in the separated 
section, which leads to the vanishing of the turbulent viscosity and the frictional stress 
throughout the separated section. The experimental data in [4] indicate that the turbulent 
frictional stress not only does not vanish in a separated section but even increases due to 
an increase in the derivative 8u/By as this section is approached. An increase in this 
derivative in the exterior region of the turbulent boundary layer leads to an increase in 
the generation of turbulent frictional stress in it, which is confirmed by thermo-anemometric 
measurements [21], and a corresponding compensation in the decrease of wall-adjacent genera- 
tion of turbulent shear stresses. The latter means that the Clauser constant must assume 
a small, but nonzero, value, the determination of which is hampered by the impossibility of 
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Dependence of  th e  Clauser  c o n s t a n t  K on the  Fig. 3. 
pressure gradient parameter $ (Fig. 3a) and fl (Fig. 
3b). Points labeled i, 2, and 3 correspond to exper- 
imental data from [4, 5], [6], and [2], respectively. 
Points labeled 4 correspond to the approximation for- 
mulas (14). 

reproducing exactly the situation of equilibrium separation. Taking into account the value 
of K = 0.003, obtained from an analysis of the experimental data in [2], and the value of 
K = 0.006 resulting from the experimental data in [4], we shall accept for the Clauser 
constant in the section of separation the following value: K = 0.005. In Fig. 3 we pre- 
sent the functions K($) and K(fl), and their approximations 

K = 0,005 -I- 0,0t 18 exp ( - -  0,1~), ( 14 ) 

K = 0,0168 - -  0,0118/~. 

d e t e r m i n e d  e x p e r i m e n t a l l y  in  a c c o r d a n c e  w i t h  [4 ,  6 ] .  

Here  f l  = ( U ' 6 * * / U ) / ( c f / 2  - U ' 6 * * / U )  = ~ / (H - 6) i s  t h e  p a r a m e t e r  i n t r o d u c e d  in  [ 2 2 ] ,  
wh ich ,  i n  c o m p a r i s o n  w i t h  ~, h a s  t h e  a d v a n t a g e  t h a t  i t  v a r i e s  w i t h i n  f i n i t e  l i m i t s ,  f rom 
zero in the gradientless section to -i in the separated section. We remark that the second 
of formulas (14) approximates the experimental data more precisely than the first. 

Profile of the Longitudinal Velocity in the Separated Section of the Turbulent Boundary 
Layer. On the basis of a comparison of characteristic experimental data and the results of 
calculations, the authors of [2] came to the following conclusion, at first glance rather 
paradoxical: In the separated section the laminar and turbulent boundary layer velocity 
profiles, written in y/6 and u/v coordinates, coincide. In spite of the fundamental value 
of this conclusion it has not been discussed further in the literature, and the question as 
to the form of the turbulent velocity profile in the separated section is still an open one. 
Verification of this important result, which we made on the basis of a comparison of the new 
experimental data [4, 5] and a calculated self-similar separated profile of the Falkner-Skan 
family [8], confirmed the coincidence of the laminar and turbulent velocity profiles (see 
Fig. 4). This coincidence is stipulated by the fact that with approach to the separation 
point there occurs, in connection with a sharp diminution of thickness of the interior re- 
gion [17], an ordinate-wise leveling (to what level is immaterial) of the turbulent viscos- 
ity profile. We recall the existence of two regions in an arbitrary, non-separated, turbu- 
lent boundary layer: an interior region and an exterior region, where the turbulent viscos- 
ities in the two regions differ strongly in magnitude, a fact which leads to a characteris- 
tic difference in form of the turbulent velocity profiles from the laminar velocity profiles. 

Coincidence of the velocity profiles does not mean laminarization of the flow; although 
the turbulent viscosity in the separated section is roughly 3 times less than in the gradi- 
entless section (see the formula in [14]), it is altogether several orders larger than the 
laminar. 

For comparison, Fig. 4 shows the equilibrium velocity profile (dashed curve) calculated 
using the Sebesi-Smit turbulence model [18], the calculations being carried out according 
to the method described in [22]. Contradiction of the calculations from the latter model, 
composed for the gradientless case, with experimental data for the turbulent boundary layer 
in a separated section arises from exaggeration in the model of the role of the interior 
region and is a glaring illustration of the need for the modification described in our 
paper. The proposed improvement in the classical Prandtl-Z]lauser turbulence model consists 
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Fig. 4. A comparison of an experimental 
turbulent velocity profile in a separa- 
ted section, using data from [4, 5] 
(points labeled i), with a laminar sep- 
arated velocity profile of the Falkner- 
Skan family [8] (points labeled 2) (H = 
4.0). Also shown is a turbulent separa- 
ted velocity profile calculated using the 
Sebesi-Smit model from [18, 22] (H = 2.4) 
(points labeled 3). 

in the use of prepared formulas for the velocity profile in the interior region and in the 
necessity of integrating the differential equation of the turbulent boundary layer with a 
modified Clauser formula for viscosity in the exterior region. This arrangement corresponds 
to the well-known property of greater sensitivity of the exterior region to a change in the 
flow parameters and it substantially eases the numerical integration of the boundary layer 
equation, making it unnecessary to introduce an integration step varying with respect to the 
ordinate. Formulas for the velocity profile and frictional stress, in the interior region 
which properly reflect the influence of a positive pressure gradient, can be used in the 
capacity of functions near the wall and in more involved turbulence models. 

NOTATION 

p,, pressure gradient in interior region; v, kinematic viscosity coefficient; p, den- 
sity; p, pressure; x, longitudinal coordinate; v,, dynamic velocity; D,, damping factor; 
N, dimensionless transverse coordinate; u, longitudinal velocity; ~, displacement pathlength; 
T, frictional stress; q*0, value of coordinate ~, at boundary between transition section and 
logarithmic region; g,, convective acceleration parameter; I,, integral in Coles' formula; 
<, and B,, logarithmic law coefficients; K S and BS, half-power law coefficients; ~S, pressure 
gradient parameter in interior region expressed in stratford variables; vs, stratford veloc- 
ity scale; S,, function used in calculating integral I, in half-power law region; 6, physical 
thickness of boundary layer; v t and Tt, turbulent viscosity and frictional stress, respec- 
tively; U, velocity at exterior boundary of boundary layer; 6*, displacement thickness; K, 
Clauser constant; ~, pressure gradient parameter in exterior region; TW, frictional stress 
at the wall; fi, normalized pressure gradient parameter in exterior region; 6**, momentum 
loss thickness; cf, friction coefficient; subscripts * and S refer, respectively, to Prandtl 
(law of the wall) and stratford variables; a prime refers to differentiation with respect to 
variable x; H is the ratio of displacement thickness to momentum loss thickness. 
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ELEMENTARY THEORY OF PSEUDO-TURBULENCE IN FINELY-DISPERSED 

SUSPENSIONS 

Yu. A. Buevich and A. M. Isaev UDC 532.545 

Relations are obtained to characterize the standard deviations of fluctuation 
velocity and the self-diffusion coefficients of the phase in flows of suspen- 
sions of small particles. 

Suspended particles and fluid moles are brought into small-scale pulsative (pseudo- 
turbulent) motion even in flows of suspenions which are macroscopically uniform, and this 
motion has a significant effect on the distribution of the phases in the flows and the ef- 
fective heat- and mass-transfer coefficients. Energy for the pulsations is supplied by 
the work done by the carrier flow against fluctuations in the concentration of the suspen- 
sion. The forces acting on individual particles differ from the local mean value, which 
leads to acceleration of the particles. As they accelerate, the particles entrain adjacent 
moles of fluid [i, 2]. 

The theory of pseudo-turbulent motion is based on representation of the fluctuations of 
the concentration, pressure, and velocity of the particles and the fluid in the form of 
steady-state random functions. These functions are analyzed using the equations of fluctu- 
ational gasdynamics, which are in turn obtained directly from the averaged equations of mass 
and momentum conservation for the phases of a suspension [3, 4]. The calculations prove to 
be very cumbersome in this case. In addition, there is a logical contradiction; the linear 
scale of the unknowns in the averaged equations is assumed to be much greater than the di- 
mensions of the particles in the suspension, but these equations are in essence being used 
to describe fluctuations with a scale on the order of these dimensions. Here, we attempt to 
circumvent this problem and at the same time simplify the calculations. 

We will examine a flow of a monodisperse suspension of fine spherical particles. The 
local values of the mean phase velocities and the pressure and concentration of the particles 
are determined from the solution of the hydrodynamic equations of the suspension and, in the 
analysis of pseudo-turbulence, are assumed to be known quantities independent of the coordin- 
ates and time. The latter assumption is justified by the fact that the temporal and linear 
scales of these means must be significantly greater than the corresponding scales for the 
pulsations. 
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